Search results

Listed under:  Technologies  >  Machinery
Text

Physics of video games lesson

In this lesson students build a simple Pong game in Scratch and consider the physics involved in the game play. They then apply their understanding of force and motion to design their own video game concept. The resource includes links to downloadable lesson plan, websites, videos, apps and an assessment rubric. The lesson ...

Text

Cardboard Automata

This activity invites students to explore simple mechanical elements such as cams, levers, and linkages, while creating a moving sculpture. This activity is simple to start but may become more and more complex as students become familiar with possible motions and imagine ways to artistically decorate their contraption. ...

Text

Balancing Sculptures

This activity invites students to explore balance and stability by designing and building whimsical kinetic sculptures that tilt, slide, and suspend everyday objects and ordinary materials into surprising arrangements. Students explore stability, centres of gravity, balanced forces and symmetry through this hands-on, tactile ...

Online

Sphero slalom lesson

In this lesson students explore slalom sports and how competitors maximise speed when completing a course. Students research different slalom sports and then share their findings with the class. Students investigate the impact of distance and friction on time to complete a course through digital and unplugged activities. ...

Text

Stomp Rocket Design Challenge

This resource provides a scaffold for students to complete a design challenge. The design challenge requires students to create a stomp rocket that can travel to a chosen planet in the solar system. The design challenge can also be used to investigate forces and energy. It can be delivered over a number of lessons, or it ...

Text

Whimsical Whirligigs

This activity invites students to design and make Whimsical Whirligigs, kinetic contraptions that can be powered by wind, crank, or motor. Students can create wind-powered paper creatures or machines with moving parts. A The activity includes a list of tools and materials required, assembly instructions, inspiration and ...

Text

Cranky Contraptions

This activity invites students to make Cranky Contraptions, kinetic sculptures that animate a character or scene when a handle is turned. These automata are powered by a simple crank slider mechanism which provides the basic motion. Everyday materials around can be repurposed into these contraptions. The activity includes ...

Video

Experimentals: Building with different shapes

Did you know that the shape of an object can affect its strength? Watch as Ruben Meerman tests two columns of different shapes to see which can carry the greater load. Consider how engineers might use this information to build tall structures.

Video

Ramping it up, Egyptian pyramid style

How did the ancient Egyptians move and lift huge stones during construction of the pyramids? Secondary student Angus Atkinson designed an experiment to find out how the lives of pyramid workers could have been made easier. See how as you watch this video, which he entered in the 2013 Sleek Geeks Eureka Science Schools Prize.

Video

Catalyst: Do heavier things fall faster?

Will a medicine ball or a basketball hit the ground first when dropped at the same time from the same height? In this clip, Catalyst's Dr Derek Muller investigates what influences the speed at which objects fall. Derek challenges some people in a market to make a prediction and explain their thinking, before he finally ...

Video

Friction: Friend or foe?

What part does the force of friction play in our everyday lives? Friction can be an advantage (friend) or a problem (foe). Join interviewer Doug Traction and professors Static, Slide, Rolling and Fluid at the National Tribology Research Centre as they have forceful fun investigating friction. This video won a prize in the ...

Video

Experimentals: Examples of Bernoulli's theorem

Have you ever wondered how a yacht sails into the wind? Watch as the Experimentals team works through practical demonstrations of Bernoulli's theorem. You're in for a few surprises as you learn how gases and liquids change their behavior as they begin to flow.

Video

Elliot and the Surfing Scientist: Balancing an aluminium can: centre of gravity

Be astounded as you watch Ruben the Surfing Scientist make an aluminium soft drink can balance at 45 degrees and rotate in a circle, as if by magic. Learn about the science behind this trick.

Video

Introduction 'Technology' in AgriBusiness (Animation)

This is a video about how Australian farmers embrace technology. Using animation, photographs and commentary with occasional puns and jokes by a primary-school--aged boy, it sets the scene of the overall impact of technology, describes why Australian farmers have always been innovative; provides a definition of technology; ...

Interactive

experiMENTALS: Trumpet straw

This resource contains a materials and instruction list and brief explanation for students about the process of making a straw that can produce vibrations when blown through.

Video

Electromagnetic Simulation (sk-Intel)

In this resource students explore how an electromagnet works in real life. They can then apply their learning in an electromagnetism game by changing the magnetism of a scrap lifter in a scrap yard and removing various amounts of scrap. The resource demonstrates the connection between the power applied, the number of coils ...

Interactive

Rotocopters

This resource contains lessons plans containing instructions and teachers' notes for a lesson that can be part of a unit on flight or used as a great motivating activity to foster positive attitudes. The clear and explicit instructions are a good example of a procedural text. The notes also provide a clear explanation of ...

Interactive

experiMENTALS: Bouncing balls

This resource contains a materials and instruction list and brief explanation for students to observe what happens when two different sized balls are dropped independently or in vertical contact. The simple explanation relates to transfer of energy.

Interactive

Energy skate park: basics

This is an interactive teaching and learning resource that years 7 to 10 secondary school students can use to simulate the motion of a skateboarder descending and ascending on a variety of tracks. Height, speed and energy conservation are visually displayed. The skater's mass and starting height, as well as the drag he ...

Video

Elliot and the Surfing Scientist: Make a lava lamp model using oil and water

Imagine making your very own lava lamp using materials from your kitchen and bathroom. Watch the Surfing Scientist team show you how it can be done, then try and figure out why it works.