Search results

Listed under:  Science  >  Forces and energy  >  Fundamental forces  >  Gravity
Video

Measuring gravity

Did you know you can measure gravity? The more mass an object has, the more gravity it has, so by measuring the mass of something, you can figure out its gravity. Why do you think climate scientists may want these measurements? Watch this NASA animation to find out.

Interactive

Sites2See: Sustainable transport

A single web page resource developed with the NRMA containing links to sites and other resources about hybrid vehicles, low emission fuels and sustainable transport.

Interactive

Sites2See: Surf safety

A webpage about surfing safety, dangerous waves and rips, and the history and science of surfing. A 'For Kids' section provides games and quizzes for young swimmers and surfers.

Text

Stomp Rocket Design Challenge

This resource provides a scaffold for students to complete a design challenge. The design challenge requires students to create a stomp rocket that can travel to a chosen planet in the solar system. The design challenge can also be used to investigate forces and energy. It can be delivered over a number of lessons, or it ...

Text

Physics of video games lesson

In this lesson students build a simple Pong game in Scratch and consider the physics involved in the game play. They then apply their understanding of force and motion to design their own video game concept. The resource includes links to downloadable lesson plan, websites, videos, apps and an assessment rubric. The lesson ...

Text

Falling for Gravity

This activity invites students to calculate the acceleration of gravity using simple materials, a cell phone, and a computer to record, watch, and analyze the motion of a dropped object. The activity includes a list of tools and materials required, assembly instructions, what to do and notice, an explanation for the underlying ...

Text

Work sample Year 4 Science: Amusement park ride

This work sample demonstrates evidence of student learning in relation to aspects of the achievement standards for Year 4 Science. The primary purpose for the work sample is to demonstrate the standard, so the focus is on what is evident in the sample not how it was created. The sample is an authentic representation of ...

Online

Sphero slalom lesson

In this lesson students explore slalom sports and how competitors maximise speed when completing a course. Students research different slalom sports and then share their findings with the class. Students investigate the impact of distance and friction on time to complete a course through digital and unplugged activities. ...

Video

Catalyst: The physics of a slinky drop

Imagine holding a slinky by the top end, with the bottom end dangling in mid-air. What do you think would happen when you let it go? Explore the physics of two equal and opposing forces working on an object in this awesome experiment!

Video

Catalyst: Do heavier things fall faster?

Will a medicine ball or a basketball hit the ground first when dropped at the same time from the same height? In this clip, Catalyst's Dr Derek Muller investigates what influences the speed at which objects fall. Derek challenges some people in a market to make a prediction and explain their thinking, before he finally ...

Video

Elliot and the Surfing Scientist: Friction between paper experiment

Are you strong enough to pull two sheets of paper apart? What about two books with the pages intertwined? Watch this experiment performed by Ruben Meerman, the Surfing Scientist, and find out how he tests the presence of friction between pieces of paper.

Video

Experimentals: Examples of Bernoulli's theorem

Have you ever wondered how a yacht sails into the wind? Watch as the Experimentals team works through practical demonstrations of Bernoulli's theorem. You're in for a few surprises as you learn how gases and liquids change their behavior as they begin to flow.

Video

Different paper plane designs

How many different paper plane designs are there? Lots! Watch as Dylan Parker, paper plane expert, demonstrates some of his favourites. Notice the way the different shapes and features of the planes cause them to move through the air in different ways. Which one do you like the most? Why not have a go at making something similar?

Interactive

Projectile motion

This is an interactive resource about projectile motion. Students use a simulation of a cannon to fire various objects. They can set the firing angle, initial speed, height and mass, with or without air resistance. Students are encouraged to make a game out of this simulation by trying to hit a target. This interactive ...

Interactive

Gravity and orbits

This is an interactive teaching and learning resource that years 7 to 10 secondary students can use to simulate the orbits of the Earth, Moon and a space station while altering the physical quantities involved. Orbital pathways, velocity and force vectors can be displayed in either scale or cartoon views. The mass and velocity ...

Video

Can We Help?: Effects of g-force on the human body

Peter Rowsthorn visits the Australian International Air Show to answer the question, 'What effect does g-force have on the human body?' Join Pete in the cockpit of a light plane for some aerobatics with pilot David Pilkington. G-force expert Dr David Newman explains the science as Pete endures up to 6 g in the aircraft.

Video

Experimentals: Building with different shapes

Did you know that the shape of an object can affect its strength? Watch as Ruben Meerman tests two columns of different shapes to see which can carry the greater load. Consider how engineers might use this information to build tall structures.

Video

Friction: Friend or foe?

What part does the force of friction play in our everyday lives? Friction can be an advantage (friend) or a problem (foe). Join interviewer Doug Traction and professors Static, Slide, Rolling and Fluid at the National Tribology Research Centre as they have forceful fun investigating friction. This video won a prize in the ...

Video

Elliot and the Surfing Scientist: Floating ping pong ball

A ping pong ball usually floats on the surface of water. Watch what happens to a ping pong ball in a tank of water as Ruben Meerman, the Surfing Scientist, experiments with the pressure of the air. (air pressure)

Online

reSolve: Modelling Motion - Year 7

This sequence of seven lessons challenges students to use simple equipment to predict, observe and represent motion. They create a series of graphs to represent motion and construct instruments to measure forces in one and then two dimensions. They interpret these representations to develop concepts of force and motion. ...