F-10 Curriculum (V8)

F-10 Curriculum (V9)

Tools and resources

Related links

Your search returned 18 results

Meet Kevin Systrom and Piper Hanson as they explain how digital images work. What are pixels, those tiny dots of light, made from? How are colours created and represented? What does Kevin say about the way mathematical functions are used to create different image filters. What is the difference between image resolution ...

In this sequence of three lessons, students use geometric reasoning to establish relationships between angles in polygons and go on to make generalisations using algebraic expressions. Students explore and enumerate right angles in a series of rectilinear polygons and generalise their findings. They then explore the number ...

This sequence of three lessons explores sums and differences of two squares. Students are introduced to the historical context of using lookup tables for multiplications and challenged to investigate and generalise the underlying process using algebraic means. In subsequent lessons students use visual and algebraic methods ...

This is a 16-page guide for teachers. This module introduces addition of whole numbers.

This is an interactive game for two students in which they solve algebraic equations, similar to 'Connect four'. The players can choose from problems that are one- or two-step, quadratic, have distributive properties or have variables on both sides, and more than one problem type can be chosen. The length of time each player ...

This is a 17-page guide for teachers. It continues the discussion of factorisation. In particular, the techniques for the factorisation of quadratic expressions are presented.

This is a website designed for both teachers and students that addresses the introduction of algebra. It is particularly relevant for introducing the idea of the use of a variable as a way of representing numbers. There are pages for both teachers and students. The student pages contain interactive questions for students ...

This is a website designed for both teachers and students that refers to algebraic notation, the laws of arithmetic and the use of these laws in algebra from the Australian Curriculum for year 7 students. It contains material on algebraic notation, the commutative and associative laws, the use of brackets and the orders ...

This is a 19-page guide for teachers. It introduces quadratic equations and methods for solving them.

This is a 23-page guide for teachers. This module contains a description of suitable models for multiplication, a discussion of the types of problems that require multiplication for their solution, and mental and written strategies for multiplication. The use of the commutative, associative and distributive laws is described. ...

This is a 29-page guide for teachers. It introduces graphing of quadratic functions.

This is a website designed for both teachers and students that discusses methods of mental computation. In particular, applying the associative, commutative and distributive laws to aid mental and written computation is discussed. These are important ideas for the introduction of algebra. There are pages for both teachers ...

An animated tutorial with a focus on collecting 'like' terms to simplify expressions. An interactive quiz is included.

If you were asked what the biggest number you can think of is, what would you say? Infinity? Well, what about the biggest finite number you can think of? Mathematician Ron Graham came across such a gigantic number in his research that, to capture its massive size, he and his colleagues needed to come up with new methods ...

Students make a presentation on the index laws, investigate the visual representation of the binomial expansions and design an acronym to help recall the special products.

An animated tutorial about terms and 'like' terms, followed by an interactive quiz.

This lesson engages students in investigating a 'think of a number' game and then model it visually and algebraically. This develops skills in algebraic operations including expanding, factorising and collecting like terms. Students investigate whether the game will work for any number and are challenged to generate the ...

This lesson challenges students to use Pythagoras' Theorem to solve a problem from an ancient Chinese text. They make physical models of the problem and use this to construct a graph. They use algebra skills associated with binomial expansions and simplification of fractions to show that the general solution given in the ...