

Years 9–10

Investigating environmental data

with microcontrollers

Activity guide

Assessment focus: Australian Curriculum: Digital Technologies

(digital systems and data)

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 2

Disclaimer: ACARA does not endorse any product or make any representations as to the quality

of such products. This resource is indicative only. Any product that uses material published on the

ACARA website should not be taken to be affiliated with ACARA or have the sponsorship or

approval of ACARA. It is up to each person to make their own assessment of the product, taking

into account matters including the degree to which the materials align with the content

descriptions and achievement standards of the Australian Curriculum. The Creative Commons

licence BY 4.0 does not apply to any trademark-protected material.

All images in this resource are the author’s own or used with permission.

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 3

Contents

Activity 0 – A broad overview of the hardware and software ...5

Arduino in schools ..5

The Arduino environment is now augmented by newer microcontrollers such as the ESP family5

Equipment: likely costs...8

Activity 1 – Simply serial: how can I see what the output is for a given input?11

What’s happening here ..11

Decomposition ...11

Installing the ESP8266 board ..11

Let’s get Serial ...12

Serial killers ..13

Code killers...13

Why use the Serial Monitor? ..14

Activity 2 – Use a light dependent resistor to measure light levels ...15

Why? ..15

What is an LDR? ..15

Decomposition ...15

System set-up ..15

How does this circuit work? ...16

The sketch ..17

What am I seeing in the Serial Monitor? ..17

Extension..17

Activity 3 – Calibrating the LDR output using regression...19

What is regression? ...19

Decomposition ...19

Collecting data ...19

System set-up ..20

What your spreadsheet should look like ..21

The sketch ..22

Activity 4 – DHT11 measures temperature and humidity ..24

What is a DHT11 ..24

The use of Libraries to give extra functionality to a program ...24

Decomposition ...25

System set-up ..25

The sketch ..26

Activity 5 – Outputs that are more meaningful ...30

Why? ..30

Decomposition ...30

System set-up ..30

The sketch ..31

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 4

What am I seeing in the Serial Monitor? ..33

Activity 6 – Wireless techniques for collecting data ..34

Why? ..34

System set-up – thingspeak.com ...34

Decomposition ...35

Security issues of data in the wild ..35

Activity 7 – Lux and temp/humidity to ThingSpeak ...37

Decomposition ...37

System set-up ..37

The sketch ..37

Activity 8 – Exploring other useful sensors and cloud services ..41

CO2 sensors ...41

UV sensors ...41

Cloud services – Thingspeak and TagoIO ...41

Activity 9 – A possible summative assessment ...42

Why? ..42

What will affect battery power? ..42

Decomposition ...42

Chips can be in 3 states: programmed, programmable and unknown (newly purchased)42

Powering up ...43

The sketch ..43

What am I seeing in the Serial Monitor? ..44

Extension..44

The sketch – including serial output...44

Activity 10 – Using a system on a chip ...49

Why? ..49

What is this? ...49

Decomposition ...49

System set-up ..49

Extension..50

The sketch ..50

Glossary ..59

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 5

Activity 0 – A broad overview of the hardware and

software

Arduino in schools

Traditionally, Arduino activities begin with making an LED blink, but the measurement of

environmental variables is comparatively easy and provides a lot more inherent interest to

students.

The structure of an Arduino sketch, and why it’s called a sketch, is available at:

https://processing.org/overview/

The Arduino environment is now augmented by newer microcontrollers such as the

ESP family

Expressif datasheet:

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf

A description of the boards:

https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html

Specification sheet for the Jaycar offering:

https://www.jaycar.com.au/medias/sys_master/images/images/9486646607902/XC3802-

manualMain.pdf

https://processing.org/overview/
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html
https://www.jaycar.com.au/medias/sys_master/images/images/9486646607902/XC3802-manualMain.pdf
https://www.jaycar.com.au/medias/sys_master/images/images/9486646607902/XC3802-manualMain.pdf

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 6

Pinouts for ESP8266 family:

Pinouts for the ESP8266

Retrieved from: https://randomnerdtutorials.com/esp8266-pinout-reference-gpios/

https://randomnerdtutoria/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 7

Pinouts for the ESP-01S:

Pinouts for the ESP-01S (a cut down version of the bigger ESP8266)

Retrieved from: https://www.instructables.com/Definitive-Guide-to-Setting-Up-Your-New-ESP01-Modu/

You may find reference to an ‘AT command set’ to program any of the ESP family. This is a

hangover from early communications. ‘AT’ means ‘ATtention’, used to prepare a modem to

receive instructions, and can be ignored as it is not used in this series of activities.

You can purchase the ESP8266 from Jaycar Electronics: https://www.jaycar.com.au/wifi-mini-

esp8266-main-board/p/XC3802 and there are several other electronics suppliers (including eBay).

It’s wise to contact the supplier and outline what you are planning to do with any items to make

sure they will behave as expected. eBay especially offers very little information to help in

determining the behaviour of components.

Add the ESP family to your boards in Arduino as:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

The main focus of the ESP8266 is the wi-fi compatibility in a small form factor. It also has an

80 MHz microcontroller and 4 MB of on-board flash memory.

It can also be purchased in the cut down version (ESP-01S) or a next level version incorporating a

more powerful, dual-core CPU, more input/output pins and Bluetooth (ESP32).

Serial drivers

Drivers are software that tell the computer how to communicate with peripherals – in this case

how to do so serially over a universal serial bus (USB) connection.

Linux and Mac computers will have the drivers installed already, as part of the operating system.

https://www.instructables.com/Definitive-Guide-to-Setting-Up-Your-New-ESP01-Modu/
https://www.jaycar.com.au/wifi-mini-esp8266-main-board/p/XC3802
https://www.jaycar.com.au/wifi-mini-esp8266-main-board/p/XC3802
http://arduino.esp8266.com/stable/package_esp8266com_index.json

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 8

With Windows, you may need to manually install a driver, which will need administrator privileges

and may involve the IT administrator of your system. See instructions:

https://windowsreport.com/arduino-problem-windows-10

If your board has a USB port, it should now work right out of the box. For the ESP-01S and other

boards without a USB connector, you’ll need to purchase a FTDI USB serial converter.

Equipment: likely costs

All prices are in Australian dollars (A$).

Deals can be found, but it’s a really good idea to buy one item first to test it before using with

students.

Item Approximate cost in A$

Breadboard

$4–5

Dupont wires

$5–10 for a bunch

Buy a lot, especially black and red for colour coding positive

and negative (ground)

Breadboard power supplies

$5–9

There are 3 pictured here, supplying power from 9 V

batteries or wall warts, or USB A, B and micro.

Most times you won’t need these as the USB socket on the

microcontrollers will supply power.

USB to serial programmer

ESP programmer IOTMCU USB to serial converter, $2–7

Note: The IO is eye-oh, not the numerals 1 and zero.

Needed for Activity 9

ESP-01S

ESP-01S, $3–7

Needed for Activity 9

https://windowsreport.com/arduino-problem-windows-10

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 9

Combo DHT11 and ESP-01 shown

with ESP on FTDI programmer

I bought a kit containing 3 x ESP01, together with 3 x

DHT11 with appropriate pins so that the 2 fitted together

easily without a breadboard, and one FTDI USB

programmer for less than $30 online. Ten dollars per

student will give a personalised experience that can be

programmed at school and then taken home.

ESP8266

$4–25 (your mileage may vary here). I paid $25 at a local

electrical supply house for this board, but you can purchase

online for much, much less. Just make sure that there is

adequate documentation, or buy one, test and make a

decision based on its operability. Look for Wemos, mini or

D1.

ESP32

$10–15

Light dependent resistor (LDR)

$1

DHT11 temperature and humidity

sensor

$2 – buy bundled with ESP-01S and a serial

programmer/converter

Metriful environment sensors board

$70 from metriful.com

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 10

2.5 µm particle sensor

$70 from metriful.com

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 11

Activity 1 – Simply serial: how can I see what the output

is for a given input?

What’s happening here

Serial means one after another. The board can send data, one byte at a time, to the computer and

show the output on a Serial Monitor, a software tool that shows (or monitors) what's happening on

the serial port, not a separate monitor screen:

Find the Serial Monitor under Tools in the Arduino integrated development environment (IDE)

The Serial Monitor will show the output from the serial lines in a separate window.

Decomposition

For this activity, we can decompose the problem to:

Configure the Arduino IDE to use an ESP8266 microcontroller

Connect the Arduino IDE to the microcontroller over USB

Check connectivity

Serially print data to check that the system is working correctly

Installing the ESP8266 board

Open Boards Manager from Tools > Board menu and install esp8266 platform

Don’t forget to select your ESP8266 board from Tools > Board menu after installation.

Arduino boards management

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 12

In the search box, search for and then add esp8266.

The Arduino boards manager

The Arduino IDE will now output to a serial port on your computer. This will usually be via the

universal serial bus (USB). (Make sure your USB lead is not a cheap power-only lead but one that

will handle data as well).

Let’s get Serial

The Arduino language, an object-oriented programming language, has 3 handy functions:

Serial.begin, Serial.print and Serial.println, all 3 being serial port objects.

We’ll use Serial.begin and Serial.println here. Serial.print will print the output on one line (like

typing words without pressing ‘enter’ after each one on a keyboard).

A sample program that tests your connections is below:

//comments have two slashes in front: the compiler knows to ignore

// anything after on the same line

void setup () // do this when the board is powered up

{

 Serial.begin(9600); //set the serial speed to 9600

}

void loop()

{

while (true) // basically forever

 {

 Serial.println("test"); //print the word "test" on a separate line

 delay(1000); //wait for a one second (1000 milliseconds)

 }

}

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 13

Serial killers

If you see gibberish when you look at your Serial Monitor, check that the speed you have specified

matches the speed shown in the monitor.

Check also that the port is correctly chosen:

Setting the port for communications with the microntroller

Code killers

The semicolon (;) after statements is essential. It’s one of the ways that the language tells whether

you are starting a new instruction or continuing an existing one.

Sometimes, the Arduino environment gets confused and you need to look back a step to find the

actual error. Note the missing semicolon below is actually missing from the line beforehand:

A typical error message from Arduino

The error doesn’t say ‘you’re missing a semicolon’ – but this, and capitalisation, are the first things

you should look for if you get an error. (For more information see Appendix 7 – Arduino tips.)

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 14

Why use the Serial Monitor?

• It’s useful as a debugging tool. If a program doesn’t work, you can comment lines out that

you consider suspect and check the value of variables over serial.

• It’s also useful as a debugging tool because you can output data to the Serial Monitor to

see if what you thought was happening with data was actually happening.

• You can copy the serial data to your computer, and paste it into a spreadsheet for

analysis.

Debugging example

If you get a serial output that looks like this:

16:14:49.476 -> TIMEOUT nan nan

16:14:52.500 -> TIMEOUT nan nan

then whatever you thought you were measuring is not actually being measured, or is in the wrong

format, hence the monitor shows ‘nan’ which is ‘not a number’ in Arduino-speak. Here, you are

also getting a timeout, so the microcontroller itself is not responding. You need to check that the

right board is selected and that the right serial connection is being used.

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 15

Activity 2 – Use a light dependent resistor to measure

light levels

Why?

Lighting determines our efficiency in carrying out a task, whether that’s reading, writing, relaxing,

doing close work like technical drawing, escaping a building in an emergency, or assembling a

product.

This website describes the Australian standards for light levels in different workplace settings:

https://www.ohsa.com.au/services/lighting-survey

What is an LDR?

Light falling on some substances changes their electrical conductivity. A light dependent resistor

(LDR) is a sensor that changes its resistance when light is shone on its surface. How much it

changes depends on the brightness of the light.

We’ll use this sort of sensor here to see how bright our classroom is and (in Activity 3) determine if

the light level is adequate for the task.

Decomposition

For this activity, we can decompose the problem to:

Connect the ESP microcontroller to a light dependent resistor using a breadboard

Use the Arduino IDE to connect to the ESP microcontroller using a serial USB

cable

Serially print the sensor value so we can double check what’s happening

System set-up

If you’re not familiar with the use of a breadboard, review Appendix 5: Background information on

breadboards.

You will need:

• a breadboard

• an LDR

• a 10 kΩ resistor

• some Dupont connector wires.

Note that the LDR is connected to the A0 pin on the esp8266. This is the analog pin as the LDR is

presenting a voltage that is analog in nature.

https://www.ohsa.com.au/services/lighting-survey

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 16

A circuit diagram is useful to trace connections

This schematic diagram is useful to check wiring

This photo is useful to check your layout

How does this circuit work?

A resistor presented with 3 volts will pretty much always show 3 V. If presented with a 5 V supply,

it will show 5 V. So, we can’t just have the LDR on its own; we need to compare its value to a

known, fixed resistor. This is called a resistive divider. We can then measure a change in voltage

across the LDR as its resistance changes and use this as a measure of light level.

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 17

The sketch

/* A simple sketch for an ESP8266 to read the level of light falling on a Light

Dependent Resistor

 and report it via serial communications

 December 2020 CCBY 4 Levins

*/

int lightLevel = 0;

void setup() // The void keyword indicates that what follows is a function that

doesn't return any values.

// it would normally contain anything we want to happen only when the system is

first powered up

{

 Serial.begin(9600); //initialise the serial output

}

void loop() // this is the main working part of the program

{

 lightLevel = analogRead(A0); // get the analog value from the LDR circuit

 Serial.print("Light level: "); // print without a new line

 Serial.println(lightLevel); // print the value then start a new line

 delay(1000); // wait for a second before reporting a new light level

}

What am I seeing in the Serial Monitor?

The number returned is just a number – it has no units and therefore is fairly useless to check if

we have enough light to work. Notice also that the number gets bigger as the light gets dimmer,

and smaller if the light gets brighter.

We need to convert this number to lux, because that’s what is used to reference adequate light

levels for safe and effective work areas. We’ll look at this in the next activity.

Extension

Research shows that light that is not constant in intensity (a flickering light) can be detrimental to

learning. See: https://theconversation.com/fluorescent-lighting-in-school-could-be-harming-your-

childs-health-and-ability-to-read-124330

So we could use a small hobby solar panel to measure light levels to see if the light in the

classroom is constant. Use a circuit like this:

https://theconversation.com/fluorescent-lighting-in-school-could-be-harming-your-childs-health-and-ability-to-read-124330
https://theconversation.com/fluorescent-lighting-in-school-could-be-harming-your-childs-health-and-ability-to-read-124330

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 18

Sample layout for measuring the voltage output of a hobby solar cell

(maximum output voltage 3 V)

Set the time for sampling (delay) to 100. Is the light level consistent? Is it different under

fluorescent and LED lamps?

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 19

Activity 3 – Calibrating the LDR output using

regression

What is regression?

Regression is the process of taking data and trying to fit a mathematical relationship between it.

It’s a basic form of artificial intelligence and it used to be hard, but modern spreadsheets make it

easy.

In the Australian Curriculum: Mathematics, content description ACMSP251 asks that students

‘Use scatter plots to investigate and comment on relationships between two numerical variables’

and suggests ‘using authentic data to construct scatter plots, make comparisons and draw

conclusions’.

We’ll use this here to build a scatter plot, then determine the relationship between LDR output and

lux. We’ll measure lux from a known source (a phone app that gives its output as lux) and

compare it with the number that the LDR gives under the same conditions.

Regression will give us a formula that we can plug into our code so that the readout is calibrated

to lux.

This activity is a great opportunity for formative assessment:

Modify the sketch from the previous activity to convert lightLevel to lux.

Decomposition

For this activity, we can decompose the problem to:

Collect concurrent readings from the light dependent resistor and from a light

meter which will give readings in lux

Find a relationship between the LDR reading and the indicated lux level

Use the relationship to convert light level to lux within the sketch

Output the light readings as lux

(optionally) use an IF structure to report light levels as text

Collecting data

If we can find an app that converts a phone to a light meter giving readings in lux, we can

generate a scatter plot of lux v the LDR reading on the serial port, then use a spreadsheet to see

what relationship exists.

See https://www.photoworkout.com/best-light-meter-apps/ for (free) iOS and Android

recommendations.

Modify the program from Activity 2 so that it sends the LDR value to the Serial Monitor once every

5 seconds:

• place a light source so that it evenly illuminates the LDR and the phone’s camera

• move the light source away, in increments, to get a series of light readings from the low

hundreds to just over 1,000. (One thousand is the recommended lux level for fine, detailed

work, and 500 is a minimum for reading.)

• enter the lux readings and the LDR readings into 2 separate columns in a spreadsheet

https://www.photoworkout.com/best-light-meter-apps/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 20

• click on any data point to select

o In Excel, Select the chart, choose Chart Design > Add Chart Element > Trendline>

more options

o In Google Sheets, double-click the chart, double-click a chart, click Customize >

Series, Click Trendline

o In Apple Numbers, click the graph, then in the Format sidebar, click the Series tab.

Click the disclosure arrow next to Trendlines, then click the pop-up menu and

choose a type of trendline

• try a visual fit: a power relationship looks best with my data

• research shows that our classrooms should be between 500 and 1,000 lux for good

reading conditions so we can ignore any entries below 100 and above 1,000, so delete all

other entries except the target amount (between 100 and 1,000)

• note that the chart adapts

• display equation on chart (this may not be dynamic – if you change the chart you may

need to choose to display the equation again). Note down or copy the equation.

System set-up

Lining up the LDR and the camera on the phone

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 21

What your spreadsheet should look like

Spreadsheet and scatter chart in Microsoft Excel

Spreadsheet and scatter chart in Apple Numbers

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 22

Spreadsheet and scatter chart in Google Sheets

The sketch

Note the equation that each gives is y = 14483x-.865 or lux = 14483lightLevel-.865 for my situation –

yours may differ.

Students need to create a new variable called ‘lux’ and a formula to translate lightLevel into lux.

Note the commented out section in the sketch below:

/* A simple sketch for an ESP8266 to read the level of light falling on a Light

Dependent Resistor, convert to lux and report it via serial

December 2020 CCBY 4 Levins*/

int lightLevel = 0;

int lux = 0;

void setup() // The void keyword indicates that what follows is a function that

doesn’t return any values.

// it would normally contain anything we want to happen only when the system is

first powered up

{

 Serial.begin(9600); //initialise the serial output

}

void loop() // this is the main working part of the program

{

 lightLevel = analogRead(A0); // get the analog value from the LDR circuit

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 23

// lux = 14483 multiplied by (lightLevel raised to the power of -.865)

// search the web to find the appropriate formula elements for the formula above

 Serial.print(“Light level: “); // print without a new line

 Serial.println(lightLevel); // print the value then start a new line

 Serial.print(“lux: “); // print without a new line

 Serial.println(lux); // print the value then start a new line

 delay(1000); // wait for a second before reporting a new light level

}

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 24

Activity 4 – DHT11 measures temperature and humidity

What is a DHT11?

A DHT11 is a low-cost single package of sensors measuring temperature and humidity.

It uses a special communications protocol to send 2 messages on one wire. Read more:

https://www.electronicwings.com/sensors-modules/dht11

It has 3 usable pins: positive, data and ground, but sometimes comes packaged as a 4-pin device

with one pin not connected to anything. Make sure you check the documentation that the vendor

provides or that the pins are clearly marked.

The DHT family also includes a more expensive, higher precision device referred to as a DHT22.

The use of Libraries to give extra functionality to a program

Imagine if you had to write down the instructions for making a drink every time you went to a shop.

You can just say, ‘I’ll have a cappuccino please’ or ‘a vanilla milkshake please’ and your order will

be made. This is an example of abstraction, where the fine detail is left out and only the one

instruction given.

Computers do this too.

Communicating with a device such as a DHT11 can be very complicated, but it’s a very common

device, so why not write it once and share the instructions? Programming languages refer to this

packaged set of instructions as a library. A library will contain all the objects needed to

communicate with a device.

Libraries are shared on a repository (such as GitHub).

The library used here is specifically designed for DHT sensor packages and can be found on

GitHub at: https://github.com/beegee-tokyo/DHTesp

Read the README.md file (or just scroll down) to see comments from the author and the objects

that are included in the library. (The library file on GitHub is discussed in more detail in Activity 5.)

To load the DHTesp library into your Arduino environment, go to Tools, Manage Libraries.

Tools…Manage Libraries in Arduino

https://www.electronicwings.com/sensors-modules/dht11
https://github.com/beegee-tokyo/DHTesp

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 25

Search for and install DHTesp.h.

The DHT library will show ‘INSTALLED’ when done

You’re all set. Now when you need to use the functionality provided by this library, you can type

this at the top of your sketch:

#include “DHTesp.h”

and your sketch will know how to find the functionality it needs.

Decomposition

For this activity, we can decompose the problem to:

Add the DHT11 to the breadboard and then to the ESP microcontroller

Use the Arduino IDE to connect to the ESP microcontroller using a serial USB

cable

Serially print the sensor values so we can double check what’s happening

System set-up

If you’re not familiar with the use of a breadboard, consult Appendix 5: Background information on

breadboards.

In addition to the resources for Activity 2, you will need:

• a DHT11 temperature and humidity sensor

• more Dupont wires.

The circuit diagram is useful to trace connections

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 26

This schematic diagram is useful to check wiring

This photo is useful to check your layout

The sketch

// We have the library in our Arduino environment, but we need to specify that it

needs to be referred to in this particular sketch

#include “DHTesp.h”

int lightLevel = 0;

DHTesp dht; // Create an instance of the class DHTesp and call it dht for

simplicity

void setup()

{

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 27

 Serial.begin(9600);

 Serial.println(); // print an empty line so that the next one gets printed

cleanly

 String thisBoard = ARDUINO_BOARD; // get the board description

 Serial.println(thisBoard); // print the description of the board used

 // the backslash t combination below is ASCII for a TAB character,

 // so all the numbers produced are structured so that

 // they will line up nicely when pasted into a spreadsheet

 Serial.println("Status\tLight\tHumidity (%)\tTemperature (C)\t(F)\tHeatIndex

(C)\t(F)");

 // Connect DHT sensor to General Purpose Input Output (GPIO) pin 5,

 // which is on pin D1 just to annoy you: refer to the graphics in Activity 0

 dht.setup(5, DHTesp::DHT11);

}

void loop()

{

 lightLevel = analogRead(A0); // get the analog value from the LDR circuit

 // devices can only send data at a certain rate,

 // so there's not much use asking for data if they can't send it.

 // Let's ask the device how often we can ask for data

 delay(dht.getMinimumSamplingPeriod());

 // make a variable to hold the humidity value

 // which will be a floating point number

 float humidity = dht.getHumidity();

 // make a variable to hold the temperature value

 // which will be a floating point number

 float temperature = dht.getTemperature();

 Serial.print(dht.getStatusString());

 Serial.print("\t");

 Serial.print(lightLevel);

 Serial.print("\t");

 Serial.print(humidity, 1);

 Serial.print("\t");

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 28

 Serial.print(temperature, 1);

 Serial.print("\t");

 Serial.print(dht.toFahrenheit(temperature), 1);

 Serial.print("\t");

 Serial.print(dht.computeHeatIndex(temperature, humidity, true), 1);

 Serial.print("\t");

 Serial.println(dht.computeHeatIndex(dht.toFahrenheit(temperature), humidity,

true), 1);

 delay(2000);

}

We can enter the formula for lux in the Arduino code

int lightLevel = 0;

DHTesp dht;

void setup()

{

 Serial.begin(9600);

 Serial.println(); // print an empty line so that the next one gets printed

cleanly

 String thisBoard = ARDUINO_BOARD; // get the board description

 Serial.println(thisBoard); // print the description of the board used

 // the backslash t combination below is ASCII for a TAB character,

 // so all the numbers produced are structured to

 // line up nicely when pasted into a spreadsheet

 Serial.println("Status\tLight\tHumidity (%)\tTemperature (C)\t(F)\tHeatIndex

(C)\t(F)");

 // Connect DHT sensor to General Purpose Input Output (GPIO) pin 5,

 // which is on pin D1 just to annoy you: refer to the graphics in Activity 0

 dht.setup(5, DHTesp::DHT11);

}

void loop()

{

 lightLevel = analogRead(A0); // get the analog value from the LDR circuit

 // devices can only send data at a certain rate,

 // so there's not much use asking for data if they can't send it.

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 29

 // Let's ask the device how often we can ask for data

 delay(dht.getMinimumSamplingPeriod());

 // make a variable to hold the humidity value

 // which will be a floating point number

 float humidity = dht.getHumidity();

 // make a variable to hold the temperature value

 // which will be a floating point number

 float temperature = dht.getTemperature();

 Serial.print(dht.getStatusString());

 Serial.print("\t");

 Serial.print(lightLevel);

 Serial.print("\t");

 Serial.print(humidity, 1);

 Serial.print("\t");

 Serial.print(temperature, 1);

 Serial.print("\t");

 Serial.print(dht.toFahrenheit(temperature), 1);

 Serial.print("\t");

 Serial.print(dht.computeHeatIndex(temperature, humidity, true), 1);

 Serial.print("\t");

 Serial.println(dht.computeHeatIndex(dht.toFahrenheit(temperature), humidity,

true), 1);

 delay(2000);

}

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 30

Activity 5 – Outputs that are more meaningful

Why?

Temperature and humidity are useful measures of an environment, but combinations of them can

produce differing levels of comfort.

AFor example, a temperature of 35 °C might be okay unless the humidity is high, in which case it’s

not.

We need to know if the combination of humidity and temperature is comfortable or too dry, or

where it is on a range from just comfortable to a severe level of discomfort.

Decomposition

For this activity, we can decompose the problem to:

Find out what functions the library offers

Supply the required data in the correct format to the function of our choice

System set-up

What does the DHTesp library allow us to do?

Developers often use a repository called GitHub to store, share and explain their work.

As mentioned earlier, the DHTesp library is stored and documents at: https://github.com/beegee-

tokyo/DHTesp

Opening this site in a web browser will reveal a lot of things that may not make sense at first so

let’s ignore them for the moment and scroll down to read the README.md file starting at

Functions.

Here is a list of functions that the library offers, including that data needs to be supplied to the

function if required.

Functions such as float getHumidity() have nothing in the parentheses therefore require no

data – they simply report the humidity as a floating point number.

But functions such as byte computePerception(float temperature, float percentHumidity, bool

isFahrenheit=false); need a bit more interpretation.

The function:

• will return a byte value: 8 bits

• requires the temperature and percent humidity as floating point numbers, and expects the

temperature to be in Celsius (isFahrenheit is false).

The single bytes returned will be:

0 -> Dry

1 -> Very comfortable

2 -> Comfortable

3 -> Ok

4 -> Uncomfortable

5 -> Quite uncomfortable

6 -> Very uncomfortable

7 -> Severe discomfort

https://github.com/beegee-tokyo/DHTesp
https://github.com/beegee-tokyo/DHTesp

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 31

To make this more meaningful, we’ll need to change the numerals into text.

Let’s modify the sketch used in Activity 4 to use:

computePerception(temperature, percentHumidity, isFahrenheit=false)

and replace the temperature and Heat index in Fahrenheit used in the previous sketch.

So, we’ll have to work out a way of looking up the number and retrieving the text that follows it.

We’ll have to the structure the data into an array so that it suits our purpose:

{"Dry", "Very comfortable", "Comfortable", "Ok", "Uncomfortable", "Quite

uncomfortable", "Very uncomfortable", "Severe discomfort"};

But you could substitute your own words here; for example:

{"Dry as", "Yeah, like this", "Comfy", "Not bad", "Not Happy", "Nah. Don’t like

this", " How hot is this?", "So hot! You’ve gotta be kidding!"};

Have a look at the sketch and note that the array is numbered from zero, so the 0th entry is ‘Dry’,

the 2nd entry is ‘Comfortable’ and so forth.

It’s common for all sort of things computing to start at zero, just like the activities in this document!

The sketch

#include "DHTesp.h"

// declare an array called pertext, that will be a constant made of characters

// separated (or delineated) by commas.

// The words describe the perception of the conditions

// We can then use an integer variable (pernum)

// to extract the term that best describes the conditions

const char* pertext[] = {"Dry", "Very comfortable", "Comfortable", "Ok",

"Uncomfortable", "Quite uncomfortable", "Very uncomfortable", "Severe

discomfort"};

int pernum = 0;

int lightLevel = 0;

// declare and initiate variables to hold the temperature and humidity values

// which will be a floating point number

float temperature = 0;

float humidity = 0;

DHTesp dht;

void setup()

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 32

{

 Serial.begin(9600);

 Serial.println(); // print an empty line so that the next one gets printed

cleanly

 String thisBoard = ARDUINO_BOARD; // get the board description

 Serial.println(thisBoard); // print the description of the board used

 // the backslash t combination below is ASCII for a TAB character,

 // so all the numbers produced are structured so that

 // they will line up nicely when pasted into a spreadsheet

 Serial.println("Status\tLight\tHumidity (%)\tTemperature (C)\tHeatIndex

(C)\tComfort");

 // Connect DHT sensor to General Purpose Input Output (GPIO) pin 5,

 // which is on pin D1 just to annoy you:

 dht.setup(5, DHTesp::DHT11);

}

void loop()

{

 lightLevel = analogRead(A0); // get the analog value from the LDR circuit

 // devices can only send data at a certain rate,

 // so there's not much use asking for data if they can't send it.

 // Let's ask the device how often we can ask for data

 delay(dht.getMinimumSamplingPeriod());

 // set variables to hold temperature and humidity values

 humidity = dht.getHumidity();

 temperature = dht.getTemperature();

 pernum = (dht.computePerception(temperature, humidity, false), 1);

 Serial.print(dht.getStatusString());

 Serial.print("\t");

 Serial.print(lightLevel);

 Serial.print("\t");

 Serial.print(humidity, 1);

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 33

 Serial.print("\t\t");

 Serial.print(temperature, 1);

 Serial.print("\t\t");

 Serial.print(dht.computeHeatIndex(temperature, humidity, false), 1);

 Serial.print("\t\t");

 Serial.println(pertext[pernum]);

 delay(2000);

}

What am I seeing in the Serial Monitor?

Check that the output is consistent with what you expect.

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 34

Activity 6 – Wireless techniques for collecting data

This activity is designed as a background exercise, directing research that will involve learning

how to connect to a cloud-based service and the security issues that may arise from such a

process.

There is no algorithm or coding per se.

Why?

As we’ve seen in previous sketches, the use of \t in serial output means that data can be

structured into columns and copy/pasted into a spreadsheet. (You can turn off Autoscroll to make

selection of data easier and turn off and timestamp depending on your needs.)

However, this method (viewing the data on a computer screen) relies on the microcontroller being

tethered to a computer using a serial cable and sometimes that is not feasible.

Because the ESP family of microcontrollers have wi-fi, we can send data out to a remote device or

location wirelessly.

If you structure your data according to their requirements, you can send the data to several

websites which can optionally chart the data and present these charts for public view via their

browser.

The Internet of Things (IoT) is reliant on the wireless transmission of datasets, via wi-fi; bluetooth;

cellular data on 3G, 4G and 5G.; Other low-power protocols such as LoraWAN, SigFox and NB-

IoT are also available. You can find comparisons of each at: https://www.iotforall.com/iot-

connectivity-comparison-lora-sigfox-rpma-lpwan-technologies

In this activity, we’ll use wi-fi to send data to the online data aggregator: Thingspeak.com.

Students may also be interested in exploring other cloud-based services such as TagoIO. There

are many more, but we’ll work with ThingSpeak here. It offers a free account that suits the

following activities.

System set-up – thingspeak.com

From the ThingSpeak website:

‘ThingSpeak is an IoT analytics platform service that allows you to

aggregate, visualize, and analyze live data streams in the cloud. You can

send data to ThingSpeak from your devices, create instant visualization of

live data, and send alerts.’

Users can create a free account which offers 3 channels, limiting update intervals to 15 seconds,

which is fine for student use.

A guide to what is possible with this platform can be found here:

https://au.mathworks.com/solutions.html?s_tid=gn_sol

The ESP family will talk to most wi-fi access points so that they can reach ThingSpeak.com, but

your school may have issues with random devices accessing its wi-fi.

The teacher or student could use their own phone as a hotspot as there is very little data involved

in these activities, but it may be prudent to purchase a portable hotspot.

https://www.iotforall.com/iot-connectivity-comparison-lora-sigfox-rpma-lpwan-technologies
https://www.iotforall.com/iot-connectivity-comparison-lora-sigfox-rpma-lpwan-technologies
Thingspeak.com
https://au.mathworks.com/solutions.html?s_tid=gn_sol

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 35

In Australia there are 2 popular options:

• Optus Link Zone (Alcatel) pre-paid $69, 4G, 14 user limit:

https://www.harveynorman.com.au/optus-link-zone-pre-paid-mobile-broadband.html

• Telstra 4GX Hotspot, 20 users, $27 per month for 12 months including Telstra Air access

and no excess data charges (speed capped at 1.5 Mbps, which is more than adequate for

these projects):

https://www.telstra.com.au/internet/mobile-broadband/telstra-4gx-hotspot#orderSummary

Prices correct at time of writing

If you want greater control over access to the portable hotspot (for example, to prevent students

taking advantage of an unfiltered internet access device), then you can use that hotspot’s control

page (see your hotspot manual) to restrict access to the media access control (MAC) addresses

of the ESP devices.

MAC addresses are 48-bit addresses, usually expressed in hexadecimal (to save space!) that

uniquely identify each internet-capable device.

ESP MAC addresses are found by including the following in your sketch:

 Serial.print("MAC: ");

 Serial.println(WiFi.macAddress());

MAC addresses can be changed or spoofed, and this is an interesting avenue for discussion, but

any change will be reversed whenever the microcontroller is restarted.

Decomposition

For this activity, we can decompose the problem to:

Make a connection to a WiFi network

Using the network, authenticate and connect to a cloud platform

Build a structure to accept data to be displayed

Structure data in a manner that the platform requires

Upload data to the platform

Test

Security issues of data in the wild

IoT projects are perfect for investigating security issues as a lot of devices don’t use secure

communication (such as https) or are unable to be updated once installed in the wild. Devices can

be easily purchased by any individual who can copy/paste software from the web and install

insecure devices that may be recruited into botnets or act as attack surfaces for bad actors.

Some questions for research may include:

• Is it possible for a nation’s electrical grid to be brought down by a botnet consisting of

several thousand programmable light bulbs that have had their operating system

compromised?

• Are microcontrollers in each light bulb manufactured to such tight cost constraints that they

do not have sufficient memory to be updated for a security hole patch?

Starting points for research:

https://www.harveynorman.com.au/optus-link-zone-pre-paid-mobile-broadband.html
https://www.telstra.com.au/internet/mobile-broadband/telstra-4gx-hotspot#orderSummary

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 36

https://www.cnet.com/news/iot-attacks-hacker-kaspersky-are-getting-worse-and-no-one-is-

listening/?ftag=CMG-01-10aaa1b

https://www.zdnet.com/article/this-old-security-vulnerability-left-millions-of-internet-of-things-

devices-vulnerable-to-attacks/

https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf

https://www.cnet.com/news/iot-attacks-hacker-kaspersky-are-getting-worse-and-no-one-is-listening/?ftag=CMG-01-10aaa1b
https://www.cnet.com/news/iot-attacks-hacker-kaspersky-are-getting-worse-and-no-one-is-listening/?ftag=CMG-01-10aaa1b
https://www.zdnet.com/article/this-old-security-vulnerability-left-millions-of-internet-of-things-devices-vulnerable-to-attacks/
https://www.zdnet.com/article/this-old-security-vulnerability-left-millions-of-internet-of-things-devices-vulnerable-to-attacks/
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 37

Activity 7 – Lux and temp/humidity to ThingSpeak

Decomposition

For this activity, we can decompose the problem to:

Create an account to use on the ThingSpeak website

Get all the data from the connected LDR and DHT11 sensors (we’ve already done

that in Activities 4, 5 and 6)

Set up the ESP microcontroller to “talk” WiFi. Note, the microcontroller can act

both as a WiFi Access Point or as a WiFi client or station. Turn off the WiFi

Access Point by calling WiFi.mode(WIFI_STA)

Define the WiFi access credentials

Check connectivity

Serially print the sensor values so we can double check what’s happening

Structure the data to suit the Application Programming Interface provided by

ThingSpeak

Send the data

Check the website

System set-up

Note that we don’t need a library for this activity as ThingSpeak offers an application programming

interface (API): a means of POSTing data to the website by structuring the data and sending it to

the ‘api.thingSpeak.com’ website.

For more information about API see: https://en.wikipedia.org/wiki/API

The sketch

#include <ESP8266WiFi.h>

#include "DHTesp.h"

// declare an integer variable to hold the voltage value

// on the analog pin and initialise it to zero

int lightLevel = 0;

int lux = 0;

String api_key = "XXXX"; // Enter your Write API key for ThingSpeak,

surrounded by inverted commas

const char *ssid = "XXXX"; // replace with your WiFi name (ssid), surrounded

by inverted commas

const char *pass = "XXXX"; // put in your WiFi Password, surrounded by

inverted commas

const char *server = "api.thingspeak.com";

DHTesp dht;

WiFiClient client; //creates a client instance for connection defined in

client.connect()

https://en.wikipedia.org/wiki/API

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 38

void setup()

{

 WiFi.mode(WIFI_STA); //make the chip WiFi client (STAtion) only

 Serial.begin(9600);

 Serial.println(); // print an empty line so that the next one gets printed

cleanly

 String thisBoard = ARDUINO_BOARD; // get the board description

 Serial.println(thisBoard); // print the description of the board used

 // the backslash t combination below is ASCII for a TAB character,

 // so all the numbers produced are structured so that

 // they will line up nicely when pasted into a spreadsheet

 Serial.println("Status\tLight\tHumidity (%)\tTemperature (C)\t(F)\tHeatIndex

(C)\t(F)");

 // Connect DHT sensor to General Purpose Input Output (GPIO) pin 5,

 // which is on pin D1 just to annoy you:

 dht.setup(5, DHTesp::DHT11);

 Serial.println("Connecting to "); // write the connection parameters for

WiFi out on the serial line

 // we can then see progress using the Serial Monitor

 Serial.println(ssid); // show the WiFi access point name

 WiFi.begin(ssid, pass); // handover connection credentials

 while (WiFi.status() != WL_CONNECTED) // ! is a negator, so this will run while

the connection

 // hasn't been finalised and print "." on the Serial Monitor

 // every half second

 {

 delay(500);

 Serial.print("."); //lotsa dots until connection has been established

 }

 Serial.println("");

 Serial.println("WiFi connected"); //yay

}

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 39

void loop()

{

 lightLevel = analogRead(A0); // get the analog value from the LDR circuit

 // make a variable to hold the humidity value

 // which will be a floating point number

 float humidity = dht.getHumidity();

 // make a variable to hold the temperature value

 // which will be a floating point number

 float temperature = dht.getTemperature();

 if (isnan(humidity) || isnan(temperature)) // "isnan" means Not A Number: if

the values are not a number

 // then something's wrong

 {

 Serial.println("Failed to read from DHT sensor!");

 return;

 }

 lux = 14483 * pow(lightLevel, -.865);

 // lux determined by regression analysis of actual measurements from

 // a luxmeter on an iPhone 11 and the raw data from the LDR circuit

 Serial.print(dht.getStatusString());

 Serial.print("\t");

 Serial.print(lux);

 Serial.print("\t");

 Serial.print(humidity, 1);

 Serial.print("\t");

 Serial.print(temperature, 1);

 Serial.print("\t");

 Serial.print(dht.computeHeatIndex(temperature, humidity, true), 1);

 Serial.print("\t");

 Serial.println(dht.computeHeatIndex(dht.toFahrenheit(temperature), humidity,

true), 1);

 if (client.connect(server, 80)) // if connect to the server on port 80 is true

(are there security issues here?)

 { // send data

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 40

 String data_to_send = api_key; // concatenate all the values we need into a

string

 // with the format that ThingSpeak requires

 data_to_send += "&field1=";

 data_to_send += humidity;

 data_to_send += "&field2=";

 data_to_send += temperature;

 data_to_send += "&field3=";

 data_to_send += lux;

 data_to_send += "\r\n\r\n"; // "\r" is ASCII for carriage return, likewise

"\n" is new line.

 // This is a hangover from when printers were just electric typewriters

 client.print("POST /update HTTP/1.1\n"); // all the client print stuff goes

via WiFi

 client.print("Host: api.thingspeak.com\n");

 client.print("Connection: close\n");

 client.print("X-THINGSPEAKAPIKEY: " + api_key + "\n");

 client.print("Content-Type: application/x-www-form-urlencoded\n");

 client.print("Content-Length: ");

 client.print(data_to_send.length());

 client.print("\n\n");

 client.print(data_to_send);

 delay(1000); //time for things to settle?

 Serial.println(" Sent to Thingspeak.");

 }

 client.stop(); // turn off WiFi unless needed to save energy

 Serial.println("Waiting...");

 /* ThingSpeak needs minimum 15 sec delay between updates, but it's set here to

5 minutes,

 which matches how the ThingSpeak charts are set up */

 delay(300000);

}

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 41

Activity 8 – Exploring other useful sensors and cloud

services

CO2 sensors

These come in 2 different styles: actual CO2 measurement and implied CO2 measurement.

The implied sensors measure volatile organic compounds (VOCs). These are carbon-based

(organic) chemical compounds that evaporate at room temperature (volatile), and are present in

normal human breath in a set proportion to the expelled CO2. An algorithm assumes that VOCs

detected are due to people’s breath and then uses a correlation between VOC and exhaled CO2.

This is not always valid, especially after sports when students may apply a deodorant, but close

enough for many measurements. They can cost upwards of A$10.

True CO2 sensors are much more expensive and generally assume a level of 400 parts per

million. More precise measurements can be made by calibration of these sensors, but that is

outside the scope of this exercise.

UV sensors

These sensors determine the level of ultraviolet light.

Common sensors are the UVM-30A and the GUVA-S12SD. The former is advised here because it

operates at 3.3 V – the same as the ESP family of microcontrollers. The latter will need a dual

voltage supply.

The obvious application for these sensors would be providing a warning for an excess UV from

the sun; perhaps alerting by placing a value on the school’s webpage using an iFrame. See:

https://www.w3schools.com/tags/tag_iframe.ASP

Also, experimentation with UV lamps as growth promotants would be a fertile ground for

exploration.

Cloud services – Thingspeak and TagoIO

Both of these services provide free (limited) access for students and experimenters, via differing

methods, including an application programming interface (API).

Comparison of the 2 and differing methods of access make for a good assessment exercise, as

does an exploration of security issues that may arise from data collection, analysis and

visualisation, together with transmission of data from one element of the system to another.

For ThingSpeak, see: https://thingspeak.com

For TagoIO, see: https://tago.io

Bear in mind that there are many other alternatives. See: https://www.sitelike.org/similar/tago.io/

https://www.w3schools.com/tags/tag_iframe.ASP
https://thingspeak.com/
https://tago.io/
https://www.sitelike.org/similar/tago.io/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 42

Activity 9 – A possible summative assessment

Note: This activity is a good match with the summative assessment proposed in Appendix 2.

Why?

The ESP/DHT11 combo is a cheap way of gathering temperature and humidity data, but if we

have to connect the module to a computer to power it, we lose a lot of that cheapness!

So, let’s use battery power. Two AA or AAA batteries in series will give us 3.2 V with fresh

batteries, which is more than enough to power the module (2.6–3.6 V), but how long will the

battery power last?

What will affect battery power?

To answer this question, let’s look at the components of the system that require power.

At a minimum, we have a sensor, a processor and wi-fi all needing power.

But do we need them turned on all the time? Is there any way we can turn the wi-fi off until it’s

needed?

Decomposition

For this activity, we can decompose the problem to:

Identify the power requirements of each component of the system

Identify the need for each system availability

Find ways of turning off different components until they are needed

Modify the code to turn components on only when needed

Chips can be in 3 states: programmed, programmable and unknown

(newly purchased)

Programming the board allows its memory to be written to so that you can get it to do your

bidding.

This often involves pushing buttons or wiring pins together. See: https://diyprojects.io/esp01-

which-programmer-choose-modification-switch-flash-mode/

Thankfully, using the FTDI USB programmer outlined in the introduction, we don’t need to do this.

https://diyprojects.io/esp01-which-programmer-choose-modification-switch-flash-mode/
https://diyprojects.io/esp01-which-programmer-choose-modification-switch-flash-mode/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 43

Using the ESP-01 and FTDI combination gives you access to the board for programming

Powering up

Power requirements: 2.6–3.6 V so 2 x AA or AAA batteries will supply this fine, but for how long?

You can turn off the wi-fi Access Point by calling WiFi.mode(WIFI_STA).

Look at Keywords in keywords.txt of the DHTesp library in your Arduino folder.

We find 2 useful functions here:

forceSleepBegin KEYWORD2 sets power usage to 20 mA (milliamps)

forceSleepWake KEYWORD2 sets power usage to 500 mA

Battery energy is measure in amp hours, meaning how many amps can be supplied for how long.

The following calculations are best case. In reality, as batteries wear down, they will be able to

supply less voltage depending on the type of battery used. Alkaline batteries will drop their voltage

too low for the ESP after about 1,000 mAh (Duracell Coppertop figures).

Lithium batteries would be your friend here as they can sustain voltage above 1.5 V before the

energy drops below 2,500 mAh. See:

https://electronics.stackexchange.com/questions/134143/when-will-the-aa-battery-voltage-drop

AA alkaline batteries will supply, say, 1,000 mA for one hour or 500mA for 2 hours.

If we collect data at 15-minute intervals, sleeping in between, we would have 96 wake-ups in a

day, each for, say 10 seconds, meaning 960 seconds = roughly 15 minutes drawing 500 mA =

125 mAh, and the balance of energy for sleeping.

Sleep energy will be 24 hours − 0.25 hours awake = 23.75 hours

23.75 hours at 20 mA = 475 mAh

Total = 475 (asleep) plus 125 (awake) = 500 mAh per day, which equals 2 days from our AAA

batteries.

If we use lithium batteries instead which have 2,500 mAh, we could go for 5 days.

The sketch

Students should modify the sketch used in Activity 6 to accommodate power management (a

suggested sketch is below).

https://electronics.stackexchange.com/questions/134143/when-will-the-aa-battery-voltage-drop

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 44

What am I seeing in the Serial Monitor?

Students should test by altering code to see results in the Serial Monitor and add battery saving

functions called after the statements in the code that collect and send data.

Once all is well, we can leave the serial code in (it won’t go anywhere) or delete it and re-enable

the known working wi-fi code from Activity 6.

Extension

Note: These links assume a good level of knowledge in electronics and a good degree of

expertise in soldering.

Sleep deeper

The ESP-01 can sleep deeper than the software itself can do. Enabling Deep Sleep will drop

current to about 3 mA!

This is not simple; you can’t do this in software alone as it requires some fine soldering and there

are some further software implications, but would make a great extension. See:

https://www.instructables.com/Enable-DeepSleep-on-an-ESP8266-01

Dive deeper into the ESP-01 pins and LEDs

https://www.instructables.com/How-to-use-the-ESP8266-01-pins/

The sketch – including serial output

#include <ESP8266WiFi.h>

#include "DHTesp.h"

// Enter your Write API key for ThingSpeak, surrounded by inverted commas

String api_key = "XXXXXXXXXX";

// replace with your WiFi name (ssid), surrounded by inverted commas

const char *ssid = "XXXX";

// put in your WiFi Password, surrounded by inverted commas

const char *pass = "XXXX";

const char *server = "api.thingspeak.com";

// create an instance of the DHT object

DHTesp dht;

// create an instance of the WiFiClient object

WiFiClient client;

void setup()

https://www.instructables.com/Enable-DeepSleep-on-an-ESP8266-01
https://www.instructables.com/How-to-use-the-ESP8266-01-pins/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 45

{

 // To use GPIO2, we need to set GPIO0 to digital zero, or LOW

 pinMode(0, OUTPUT);

 digitalWrite(0, LOW);

 // make the chip WiFi client (STAtion) only

 WiFi.mode(WIFI_STA);

 Serial.begin(9600);

 // print an empty line so that the next one gets printed cleanly

 Serial.println();

 // get the board description

 String thisBoard = ARDUINO_BOARD;

 // print the description of the board used

 Serial.println(thisBoard);

 // the backslash t combination below is ASCII for a TAB character,

 // so all the numbers produced are structured so that

 // they will line up nicely when pasted into a spreadsheet

 Serial.println("Status\tHumidity (%)\tTemperature (C)");

 // Note that the pin number changes to pin 3 for this microcontroller

 dht.setup(2, DHTesp::DHT11);

 // write the connection parameters for WiFi out on the serial line

 // we can then see progress using the Serial Monitor

 Serial.println("Connecting to ");

 // show the WiFi access point name

 Serial.println(ssid);

 // handover connection credentials

 WiFi.begin(ssid, pass);

 // ! is a negator, so this will run while the connection

 // hasn't been finalised and print "." on the Serial Monitor

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 46

 // every half second

 while (WiFi.status() != WL_CONNECTED)

 {

 delay(500);

 //lotsa dots until connection has been established

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected"); //yay

}

void loop()

{

 // make a variable to hold the humidity value

 // which will be a floating point number

 float humidity = dht.getHumidity();

 // make a variable to hold the temperature value

 // which will be a floating point number

 float temperature = dht.getTemperature();

 // check communication with DHT module

 // "isnan" means Not A Number: if the values are not a number

 // then something's wrong

 if (isnan(humidity) || isnan(temperature))

 {

 Serial.println("Failed to read from DHT sensor!");

 delay(1000);

 return;

 }

 Serial.print(dht.getStatusString());

 Serial.print("\t");

 Serial.print(humidity, 1);

 Serial.print("\t");

 Serial.print(temperature, 1);

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 47

 Serial.println("\t");

 // if connect to the server on port 80 is true (are there security issues here?

 // Should we be using another port for https?)

 if (client.connect(server, 80))

 // send data

 {

 // concatenate all the values we need into a string

 // with the format that ThingSpeak requires

 String data_to_send = api_key;

 data_to_send += "&field1=";

 data_to_send += humidity;

 data_to_send += "&field2=";

 data_to_send += temperature;

 // "\r" is ASCII for carriage return, likewise "\n" is new line.

 // This is a hangover from when printers were just electric typewriters

 data_to_send += "\r\n\r\n";

 // all the client print stuff goes via WiFi

 client.print("POST /update HTTP/1.1\n");

 client.print("Host: api.thingspeak.com\n");

 client.print("Connection: close\n");

 client.print("X-THINGSPEAKAPIKEY: " + api_key + "\n");

 client.print("Content-Type: application/x-www-form-urlencoded\n");

 client.print("Content-Length: ");

 client.print(data_to_send.length());

 client.print("\n\n");

 client.print(data_to_send);

 Serial.println(" Sent to Thingspeak.");

 }

 // turn off WiFi unless needed to save energy

 // A great opportunity to research low power mode

 // rather than simply turning WiFi off

 client.stop();

 Serial.println("Waiting...");

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 48

 // ThingSpeak needs minimum 15 sec delay between updates,

 // but it's set here to 5 minutes,

 // match this to how the ThingSpeak charts are set up

 delay(300000);

}

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 49

Activity 10 – Using a system on a chip

Why?

Individual sensors are ideal for starting out or for bespoke solutions, but sometimes a system on a

chip (SoC) which carries a plethora of sensors for a specific function is better suited.

Such a SoC is provided by Metriful. See: https://www.metriful.com

What is this?

The Metriful SoC is compatible with a number of boards, including the ESP family, and provides

measurement of:

• VOC (from which air quality and carbon dioxide levels can be deduced)

• temperature

• humidity

• air pressure

• sound levels (including weighting based on sound frequencies)

• light levels and spectra (from which lux can be deduced).

Decomposition

For this activity, we can decompose the problem to:

Explore the options for the Metriful board, on github.com/metriful/sensor Develop

an algorithm for outputting collected data to Serial only

Choose an IoT cloud platform such as ThingSpeak or TagoIO

Create an account on the platform of choice

IF you elect to go one step further

 Create an account on IFTTT.com and set up to send an email

to you when an environmental variable(s) are out of range

ELSE

 Use the cloud platform to create an iFrame that can be included

In your school’s webpage

Present your completed platform page as evidence of your work

Document the procedure for use by a fellow student

System set-up

The SoC will happily talk to most boards with both Arduino and Python supported (Python on

Raspberry Pi only at time of writing).

One warning: the Metriful examples in its library uses these lines of code:

while (!Serial)

 {

 ; // Wait for serial to connect

 }

https://www.metriful.com/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 50

The ‘!’ or pling character means negate what follows. So, this line means ‘if serial communications

are not established’.

This is not supported by all ESP boards. They may ignore it, but I have found that some

(particularly the Jaycar ones) don’t – they just stall here, even if the serial connection is up and

running.

The solution is to delete, or better still, comment out with a reason so that anyone else using your

sketches is also alerted to this problem. See:

https://arduino.stackexchange.com/questions/65017/arduino-ide-while-serial

Extension

Create an account on IFTTT.com and set up to send an email to you whenever the measurement

for the environmental variable(s) are out of range, or if the power supply falls below 3 V.

Use your preferred cloud platform to create an iFrame that can be included in your school’s

webpage.

The sketch

/*

 IoT_cloud_logging.ino

 Example IoT data logging code for the Metriful MS430.

 This example is designed for the following WiFi enabled hosts:

 Arduino Nano 33 IoT

 Arduino MKR WiFi 1010

 ESP8266 boards (e.g. Wemos D1, NodeMCU)

 ESP32 boards (e.g. DOIT DevKit v1)

 Environmental data values are measured and logged to an internet

 cloud account every 100 seconds, using a WiFi network.

 Copyright 2020 Metriful Ltd.

 Licensed under the MIT Licence:

 Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal in

the Software without restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the

Software, and to permit persons to whom the Software is furnished to do so,

subject to the following conditions:

https://github.com/metriful/sensor/blob/master/LICENSE.txt

 For code examples, datasheet and user guide, visit

 https://github.com/metriful/sensor

 Adapted and Modified Levins, 2021

https://arduino.stackexchange.com/questions/65017/arduino-ide-while-serial
https://github.com/metriful/sensor/blob/master/LICENSE.txt

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 51

*/

#include <Metriful_sensor.h>

#include <ESP8266WiFi.h>

#include "ThingSpeak.h" // always include ThingSpeak header file after other

header files and custom macros

//

// USER-EDITABLE SETTINGS

// How often to read and log data (every 100 or 300 seconds)

// Note: due to data rate limits on free cloud services, this should

// be set to 100 or 300 seconds, not 3 seconds.

uint8_t cycle_period = CYCLE_PERIOD_100_S; /* uint8_t defines the variable

cycle_period as a fixed width of 8 bits.

 change this to char to make it easier for readers?

 Looks like CYCLE_PERIOD is part of a header file? It's only used once here

 I think I can make a case for uint8_t with UTF8 text.

 Indeed, char seems to imply a character, whereas in the context of a UTF8

string,

 it may be just one byte of a multibyte character.

 Using uint8_t could make it clear that one shouldn't expect a character at

every position.

 In other words that each element of the string/array is an arbitrary integer

 that one shouldn't make any semantic assumptions about. */

// The details of the WiFi network:

const char *ssid = "XXXX"; // network SSID (name)ch

const char *password = "XXXX"; // network password

// IoT cloud settings

// This example uses the free IoT cloud hosting services provided

// by Tago.io or Thingspeak.com

// Other free cloud providers are available.

// An account must have been set up with the relevant cloud provider

// and a WiFi internet connection must exist. See the accompanying

// readme and User Guide for more information.

// The chosen account's key/token must be put into the relevant define below.

#define TAGO_DEVICE_TOKEN_STRING "PASTE YOUR TOKEN HERE WITHIN QUOTES"

#define THINGSPEAK_API_KEY_STRING "XXXXXXXXXXXX"

unsigned long myChannelNumber = XXXXXXXX;

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 52

// Choose which provider to use

bool useTagoCloud = false;

// To use the ThingSpeak cloud, set: useTagoCloud=false

// END OF USER-EDITABLE SETTINGS

//

/*#if !defined(HAS_WIFI)

 #error ("This example program has been created for specific WiFi enabled hosts

only.")

 #endif*/

WiFiClient client;

// Buffers for assembling http POST requests

char postBuffer[450] = {0};

char fieldBuffer[70] = {0};

// Structs for data

AirData_t airData = {0}; // an array for data?

AirQualityData_t airQualityData = {0};

LightData_t lightData = {0};

ParticleData_t particleData = {0};

SoundData_t soundData = {0};

void setup() {

 // Initialise the host's pins, set up the serial port and reset:

 // Serial.begin(115200);

 SensorHardwareSetup(I2C_ADDRESS);

 // connectToWiFi(SSID, password);

 WiFi.begin(ssid, password);

 // Apply chosen settings to the MS430

 uint8_t particleSensor = PARTICLE_SENSOR;

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 53

 TransmitI2C(I2C_ADDRESS, PARTICLE_SENSOR_SELECT_REG, &particleSensor, 1);

 TransmitI2C(I2C_ADDRESS, CYCLE_TIME_PERIOD_REG, &cycle_period, 1);

 // Enter cycle mode

 ready_assertion_event = false;

 TransmitI2C(I2C_ADDRESS, CYCLE_MODE_CMD, 0, 0);

}

void loop() {

 // Wait for the next new data release, indicated by a falling edge on READY

 while (!ready_assertion_event) {

 yield();

 }

 ready_assertion_event = false;

 /* Read data from the MS430 into the data structs.

 For each category of data (air, sound, etc.) a pointer to the data struct is

 passed to the ReceiveI2C() function. The received byte sequence fills the

 struct in the correct order so that each field within the struct receives

 the value of an environmental quantity (temperature, sound level, etc.)

 */

 // Air data

 // Choose output temperature unit (C or F) in Metriful_sensor.h

 ReceiveI2C(I2C_ADDRESS, AIR_DATA_READ, (uint8_t *) &airData, AIR_DATA_BYTES);

 /* Air quality data

 The initial self-calibration of the air quality data may take several

 minutes to complete. During this time the accuracy parameter is zero

 and the data values are not valid.

 */

 ReceiveI2C(I2C_ADDRESS, AIR_QUALITY_DATA_READ, (uint8_t *) &airQualityData,

AIR_QUALITY_DATA_BYTES);

 // Light data

 ReceiveI2C(I2C_ADDRESS, LIGHT_DATA_READ, (uint8_t *) &lightData,

LIGHT_DATA_BYTES);

 // Sound data

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 54

 ReceiveI2C(I2C_ADDRESS, SOUND_DATA_READ, (uint8_t *) &soundData,

SOUND_DATA_BYTES);

 /* Particle data

 This requires the connection of a particulate sensor (invalid

 values will be obtained if this sensor is not present).

 Specify your sensor model (PPD42 or SDS011) in Metriful_sensor.h

 Also note that, due to the low pass filtering used, the

 particle data become valid after an initial initialisation

 period of approximately one minute.

 */

 if (PARTICLE_SENSOR != PARTICLE_SENSOR_OFF) {

 ReceiveI2C(I2C_ADDRESS, PARTICLE_DATA_READ, (uint8_t *) &particleData,

PARTICLE_DATA_BYTES);

 }

 // Check that WiFi is still connected

 uint8_t wifiStatus = WiFi.status();

 /* if (wifiStatus != WL_CONNECTED)

 {

 // There is a problem with the WiFi connection: attempt to reconnect.

 Serial.print("Wifi status: ");

 Serial.println(interpret_WiFi_status(wifiStatus));

 connectToWiFi(SSID, password);*/

 //WiFi.begin(ssid, password); repeated from earlier

 while (WiFi.status() != WL_CONNECTED) //! is a negator, so this will run while

the connection

 // hasn't been finalised and print "." on the Serial Monitor

 // every half second

 {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected");

 ready_assertion_event = false;

 // }

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 55

 // Send data to the cloud

 if (useTagoCloud) {

 http_POST_data_Tago_cloud();

 }

 else {

 http_POST_data_Thingspeak_cloud();

 }

}

/* For both example cloud providers, the following quantities will be sent:

 1 Temperature (C or F)

 2 Pressure/Pa

 3 Humidity/%

 4 Air quality index

 5 bVOC/ppm

 6 SPL/dBA

 7 Illuminance/lux

 8 Particle concentration

 Additionally, for TagoIO, the following is sent:

 9 Air Quality Assessment summary (Good, Bad, etc.)

 10 Peak sound amplitude / mPa

*/

// Assemble the data into the required format, then send it to the

// Tago.io cloud as an HTTP POST request.

void http_POST_data_Tago_cloud(void) {

 client.stop();

 if (client.connect("api.tago.io", 80)) {

 client.println("POST /data HTTP/1.1");

 client.println("Host: api.tago.io");

 client.println("Content-Type: application/json");

 client.println("Device-Token: " TAGO_DEVICE_TOKEN_STRING);

 uint8_t T_intPart = 0;

 uint8_t T_fractionalPart = 0;

 bool isPositive = true;

 getTemperature(&airData, &T_intPart, &T_fractionalPart, &isPositive);

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 56

 sprintf(postBuffer, "[{\"variable\":\"temperature\",\"value\":%s%u.%u}",

 isPositive ? "" : "-", T_intPart, T_fractionalPart);

 sprintf(fieldBuffer, ",{\"variable\":\"pressure\",\"value\":%" PRIu32 "}",

airData.P_Pa);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, ",{\"variable\":\"humidity\",\"value\":%u.%u}",

 airData.H_pc_int, airData.H_pc_fr_1dp);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, ",{\"variable\":\"aqi\",\"value\":%u.%u}",

 airQualityData.AQI_int, airQualityData.AQI_fr_1dp);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, ",{\"variable\":\"aqi_string\",\"value\":\"%s\"}",

 interpret_AQI_value(airQualityData.AQI_int));

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, ",{\"variable\":\"bvoc\",\"value\":%u.%02u}",

 airQualityData.bVOC_int, airQualityData.bVOC_fr_2dp);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, ",{\"variable\":\"spl\",\"value\":%u.%u}",

 soundData.SPL_dBA_int, soundData.SPL_dBA_fr_1dp);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, ",{\"variable\":\"peak_amp\",\"value\":%u.%02u}",

 soundData.peak_amp_mPa_int, soundData.peak_amp_mPa_fr_2dp);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, ",{\"variable\":\"particulates\",\"value\":%u.%02u}",

 particleData.concentration_int, particleData.concentration_fr_2dp);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, ",{\"variable\":\"illuminance\",\"value\":%u.%02u}]",

 lightData.illum_lux_int, lightData.illum_lux_fr_2dp);

 strcat(postBuffer, fieldBuffer);

 size_t len = strlen(postBuffer);

 sprintf(fieldBuffer, "Content-Length: %u", len);

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 57

 client.println(fieldBuffer);

 client.println();

 client.print(postBuffer);

 }

 else {

 Serial.println("Client connection failed.");

 }

}

// Assemble the data into the required format, then send it to the

// ThinSspeak.com cloud as an HTTP POST request.

void http_POST_data_Thingspeak_cloud(void) {

 client.stop();

 if (client.connect("api.thingspeak.com", 80)) {

 client.println("POST /update HTTP/1.1");

 client.println("Host: api.thingspeak.com");

 client.println("Content-Type: application/x-www-form-urlencoded");

 strcpy(postBuffer, "api_key=" THINGSPEAK_API_KEY_STRING);

 uint8_t T_intPart = 0;

 uint8_t T_fractionalPart = 0;

 bool isPositive = true;

 getTemperature(&airData, &T_intPart, &T_fractionalPart, &isPositive);

 sprintf(fieldBuffer, "&field1=%s%u.%u", isPositive ? "" : "-", T_intPart,

T_fractionalPart);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, "&field2=%" PRIu32, airData.P_Pa);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, "&field3=%u.%u", airData.H_pc_int, airData.H_pc_fr_1dp);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, "&field4=%u.%u", airQualityData.AQI_int,

airQualityData.AQI_fr_1dp);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, "&field5=%u.%02u", airQualityData.bVOC_int,

airQualityData.bVOC_fr_2dp);

 strcat(postBuffer, fieldBuffer);

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 58

 sprintf(fieldBuffer, "&field6=%u.%u", soundData.SPL_dBA_int,

soundData.SPL_dBA_fr_1dp);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, "&field7=%u.%02u", lightData.illum_lux_int,

lightData.illum_lux_fr_2dp);

 strcat(postBuffer, fieldBuffer);

 sprintf(fieldBuffer, "&field8=%u.%02u", particleData.concentration_int,

 particleData.concentration_fr_2dp);

 strcat(postBuffer, fieldBuffer);

 size_t len = strlen(postBuffer);

 sprintf(fieldBuffer, "Content-Length: %u", len);

 client.println(fieldBuffer);

 client.println();

 client.print(postBuffer);

 Serial.println(fieldBuffer);

 Serial.println();

 Serial.print(postBuffer);

 }

 else {

 Serial.println("Client connection failed.");

 }

}

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

 59

Glossary

analogue or analog

Of or relating to a signal voltage which can take any value in a range. For example, a light dependent

resistor may present a voltage between 0 and 1 V to an analog inout on a microcontroller. The

microcontroller will divide this range up into a binary number between 0 and 255 (8-bit or 28 analog)

or 0–1023 (10-bit or 210 analog).

general-purpose programming languages

Programming languages in common use designed to solve a wide range of problems. Examples

include C#, C++, Java, JavaScript, Python, Ruby and Visual Basic. In this document, we concentrate

on the Arduino variant of C++.

libraries

Pieces of code contained in a file. These pieces carry out specific tasks that need to be written once

and re-used each time the environment of the library is used. For example, the library

‘ESP8266Wi-fi.h’ contains objects that allow interaction with the wi-fi capabilities of all members of

the ESP family.

lux

A unit of the illumination or amount of light falling on a surface. For example, we can use a light

meter or lux meter to measure the light reflected from a person’s face to set the exposure and shutter

speed of a camera. This is done automatically in most cameras. Lux is calculated from light levels,

but also the colour make-up of the incident light.

objects

A programming structure that contains (encapsulates) properties (data) and methods (functions). An

object is a variable.

pseudocode

A way of showing algorithms without use of any specific programming language. This makes the

algorithm easy to understand for everyone, whatever programming language they might use.

Pseudocode is usually written in English text. Purists would insist that pseudocode be written with no

recognisable computer language words, but some common operation words, for example, if, then

and else, are commonly found in pseudocode.

variable

A variable is the name given to a reserved area of computer memory to hold data that can change.

They need to be declared in program code so that the computer knows to reserve sufficient memory.

For example, a variable may be declared to hold the reading from a sensor as an integer (counting

numbers: 0,1,2,3,4,5 etc.) or as a floating-point number (fractional numbers such as 1.56789), or it

may be intended to hold a piece of text. In each case, the variable will need to be declared as a type

that matches the data it is to hold. Variables may also need to be initialised to a set value before use.

wi-fi

A communications standard which is short for wireless fidelity. This networking system can have

clients or access points to which clients connect. The access point can relay the client data to, or

retrieve data from, a network for them. Some devices can act as both clients and access points.

See also the glossary for the Australian Curriculum: Technologies:

www.australiancurriculum.edu.au/f-10-curriculum/technologies/glossary/

http://encyclopedia.kids.net.au/page/al/Algorithm
http://www.australiancurriculum.edu.au/f-10-curriculum/technologies/glossary/

	Contents
	Activity 0 – A broad overview of the hardware and software
	Arduino in schools
	The Arduino environment is now augmented by newer microcontrollers such as the ESP family
	Expressif datasheet:
	A description of the boards:
	Specification sheet for the Jaycar offering:
	Pinouts for ESP8266 family:
	Pinouts for the ESP-01S:
	Serial drivers

	Equipment: likely costs

	Activity 1 – Simply serial: how can I see what the output is for a given input?
	What’s happening here
	Decomposition
	Installing the ESP8266 board
	Let’s get Serial
	Serial killers
	Code killers
	Why use the Serial Monitor?
	Debugging example

	Activity 2 – Use a light dependent resistor to measure light levels
	Why?
	What is an LDR?
	Decomposition
	System set-up
	How does this circuit work?
	The sketch
	What am I seeing in the Serial Monitor?
	Extension

	Activity 3 – Calibrating the LDR output using regression
	What is regression?
	Decomposition
	Collecting data
	System set-up
	What your spreadsheet should look like
	The sketch

	Activity 4 – DHT11 measures temperature and humidity
	The use of Libraries to give extra functionality to a program
	Decomposition
	System set-up
	The sketch

	Activity 5 – Outputs that are more meaningful
	Why?
	Decomposition
	System set-up
	The sketch
	What am I seeing in the Serial Monitor?

	Activity 6 – Wireless techniques for collecting data
	Why?
	System set-up – thingspeak.com
	Decomposition
	Security issues of data in the wild

	Activity 7 – Lux and temp/humidity to ThingSpeak
	Decomposition
	System set-up
	The sketch

	Activity 8 – Exploring other useful sensors and cloud services
	CO2 sensors
	UV sensors
	Cloud services – Thingspeak and TagoIO

	Activity 9 – A possible summative assessment
	Why?
	What will affect battery power?
	Decomposition
	Chips can be in 3 states: programmed, programmable and unknown (newly purchased)
	Powering up
	The sketch
	What am I seeing in the Serial Monitor?
	Extension
	Sleep deeper
	Dive deeper into the ESP-01 pins and LEDs

	The sketch – including serial output

	Activity 10 – Using a system on a chip
	Why?
	What is this?
	Decomposition
	System set-up
	Extension
	The sketch

	Glossary

